Dynamic Data Driven Methods for Self-aware Aerospace Vehicles

نویسندگان

  • Douglas L. Allaire
  • George Biros
  • J. Chambers
  • Omar Ghattas
  • D. Kordonowy
  • Karen Willcox
چکیده

A self-aware aerospace vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings and responding intelligently. Achieving this DDDAS paradigm enables a revolutionary new generation of self-aware aerospace vehicles that can perform missions that are impossible using current design, flight, and mission planning paradigms. To make self-aware aerospace vehicles a reality, fundamentally new algorithms are needed that drive decision-making through dynamic response to uncertain data, while incorporating information from multiple modeling sources and multiple sensor fidelities. In this work, the specific challenge of a vehicle that can dynamically and autonomously sense, plan, and act is considered. The challenge is to achieve each of these tasks in real time—executing online models and exploiting dynamic data streams—while also accounting for uncertainty. We employ a multifidelity approach to inference, prediction and planning—an approach that incorporates information from multiple modeling sources, multiple sensor data sources, and multiple fidelities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Offline/Online DDDAS Capability for Self-Aware Aerospace Vehicles

In this paper we develop initial offline and online capabilities for a self-aware aerospace vehicle. Such a vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings via sensors and responding intelligently. The key challenge to enabling such a self-aware aerospace vehicle is to achieve tasks of dynamically and autonomously sensing, pl...

متن کامل

Multifidelity DDDAS Methods with Application to a Self-aware Aerospace Vehicle

A self-aware aerospace vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings and responding intelligently. We consider the specific challenge of an unmanned aerial vehicle that can dynamically and autonomously sense its structural state and re-plan its mission according to its estimated current structural health. The challenge is t...

متن کامل

Adaptive attitude controller of a reentry vehicles based on Back-stepping Dynamic inversion method

This paper presents an attitude control algorithm for a Reusable Launch Vehicle (RLV) with a low lift/drag ratio (L/D < 0.5), in the presence of external disturbances, model uncertainties, control output constraints and the thruster model. The main novelty of proposed control strategy is a new combination of the attitude control methods included backstepping, dynamic inversion and adaptive cont...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

On Self-referential Shape Replication in Robust Aerospace Vehicles

We describe a multi-cellular shape replication mechanism implemented in a sensing and communication network, motivated by robust self-monitoring and self-repairing aerospace vehicles. In particular, we propose a self-referential representation (a “genome”), enabling self-inspection and selfrepair; an algorithm solving the problem for connected and disconnected shapes; and a robust algorithm rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012